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Yield strength and anelastic limit of amorphous 
ductile polymers 
Part 2 The model of yield 
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This paper describes a molecular model of yield for glassy polymers using polyethylene as the 
model material. The derived yield strength is simply related to fundamental molecular proper- 
ties of the material. The mechanism of yield does not rely on any of the classical dislocation 
concepts. Instead it is shown that the yield strength of an amorphous glassy polymer should 
be viewed in terms of the integrity of a network of the strongest intermolecular bonds in a 
relatively weaker matrix. Furthermore it is shown that amorphous polymers behave in an 
anelastic manner as a result of their microstructure. The magnitude of the anelastic strain limit 
for r = ~y is also derived in terms of molecular quantities. 

1. I n t r o d u c t i o n  
A characteristic feature of ductile materials is that, 
when deformed under mechanical forces, they show 
two distinct regions of behaviour: (i) an initial 
recoverable "elastic" region; and (ii) a largely non- 
recoverable "plastic" region. The critical stress at 
which this change occurs is called the yield strength, 
and the corresponding strain - the elastic limit. Both 
are connected to a particular molecular mechanism 
which leads to the change from elastic to plastic 
behaviour. 

The conceptual introduction of the dislocation by 
Taylor and Orowan and Polanyi, and its experimental 
verification by Mitchell and others, created a major 
landmark on the way of the development of Materials 
Science. It has had a major influence on the under- 
standing of mechanical behaviour of crystalline 
materials. In addition, such thinking has led to the 
formulation of two theories for the yield strength of 
amorphous polymers [1, 2] which rely wholly or par- 
tially on concepts derived from dislocation or dis- 
clination theories. However, there are good reasons 
for not using such essentially crystalline concepts to 
explain plasticity in amorphous polymers and, indeed, 
several molecular theories of yield in amorphous poly- 
mers, independent of the concept of dislocations, have 
already been proposed [3 -5]. It will be shown in this 
paper that deformation in, and the yield strength of 
amorphous polymers should be viewed in terms of the 
integrity of a network of strongest intermolecular 
bonds (not the covalent backbone bonds) in a rela- 
tively weaker matrix. This is in contrast to the case of 
ductile metals, in which the strength of a hard matrix 
(crystal lattice) is determined by a network of weak- 
nesses (dislocations). 

2. Assumptions of the model 
The development of the model is based on the follow- 
ing premises: 
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1. Plastic flow is a manifestation of the breaking of 
atomic bonds under the influence of stress, and must 
follow the principle that weaker bonds break first. 

2. Deformation in amorphous polymers up to the 
yield point is a fully recoverable, anelastic defor- 
mation. 

3. The structure of amorphous polymers is that 
represented by a random packing of molecular chains. 
This implies a distribution of monomer to monomer 
distances around the average value as calculated from 
the density (or the specific volume), and also a distri- 
bution of relative orientations of chain segments. 

4. Changes of density (or specific volume) with tem- 
perature or with microstructure occur by changes in 
separation of molecular chains only. The length of the 
chain, i.e. the C - C  distance along the backbone and 
the valency angle remain unaltered (to a first approxi- 
mation) over the temperature range of interest. 

5. Below the glass transition temperature flow in 
amorphous polymers involves an interdependent 
motion of segments of the molecular chain, each seg- 
ment comprising a number of repeat units. The length 
of the segment, i.e. the number of the repeat units per 
segment, changes with temperature. ' 

6. Finally, the kinetic effects due to thermal 
vibrations and the associated molecular transitions, 
are excluded from this description of the model. It 
follows that strain-rate effects are also not considered 
at this stage. However, the implications of these on the 
model are discussed later on. 

The model to be described relies to a major extent 
on the fact that polymers, unlike metals, show a large 
variation in density between their respective crystal- 
line and amorphous states. For example, the theor- 
etical density of crystalline polyethylene at room tem- 
perature is 1.000 gcm- 3, whereas the density of a com- 
pletely amorphous polyethylene is estimated to be 
0.875gcm 3. The change, expressed as A~/0, is 12%. 
The corresponding change in density for glassy and 
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crystalline alloys, for example, Metglas alloy of 
Pd N i - P  is less than 1%. Even on melting of  pure 
metals the change in density from solid to liquid is no 
more than 3 to 4%. This difference is due, of course, 
to the high anisotropy (and variety) of atomic bonds 
which enforce the existence and protect the integrity of 
the molecular chains. The random packing of the 
molecular chain encounters different geometrical 
limitations compared to those imposed on random 
packing of  individual atoms with relatively isotropic 
metallic bonding, as in metallic glasses. 

The next important feature on which the model is 
based is the assumption as to the distribution of the 
CH2 to CH2 group distances to be found in a ran- 
domly packed (amorphous) polyethylene. Whilst defi- 
nite experimental facts on this aspect are still lacking, 
one can make a reasonable guess as to the shape of 
this distribution. For the purpose of the model pres- 
ented here this distribution is assumed to have a rec- 
tangular shape, of  width equal to (rmax -- r0) and 
height equal to No, as was derived in Part 1 of  this 
publication [6]. 

3. The model of yield 
The essential features of the model can be derived to 
a first approximation from the diagram shown in 
Fig. 1. It is assumed that the deformation of  every 
chain element in the amorphous polyethylene relative 
to its nearest non-covalent neighbouring segments will 
be governed by this illustrated force distance law. 

Fig. 1 shows the variation of the potential energy, 
U(r), and its first derivative, 8U(r)/Or = f(r) against 
chain separation for two parallel chains of  poly- 
ethylene. The U(r) curve is drawn on the basis of 
Lennard-Jones  potential [7, 8]. The minimum in 
potential energy of  - 7 . 6 9  kJ mol ~ is taken from the 
lattice cohesive energy of  polyethylene [9, 10]. The 
equilibrium separation of 0.46 nm is an average value 
of  chain spacings along (0 1 0) and (1 1 0) directions in 
the lattice extrapolated to 0 K. 

Let us consider the material at a temperature of  
213 K. At the points of constriction discussed earlier 
[6], there will be CH2-CH2 non-covalent pairs at their 
optimum binding distance r0 with the corresponding 

2 .0  i , , , 

I i 
' ~  1.C 

: o.o \ /1 I t 
~- U(r 

_ _  - 1 . 0  

.~ 

2 
"2 .0  I | I i I , 

0 . 4 0  0 . 4 5  0 . 5 0  0 . 5 5  0 . 6 0  

Interchain distance (nm) 

Figure 1 Variation of  potential energy and interchain force with 
distance in crystalline polyethylene. The shaded area represents 
distribution of  van der Waals bonded CH 2 pairs predicted to occur 
in amorphous polyethylene. 
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maximum binding force fmax" TO maintain the 
amorphous density there must be CH2-CH 2 non- 
covalent pairs at separations indicated in the diagram 
as rma x and for that matter, at all spacings in between 
r 0 and /"max" 

The height of the box, No, indicates the number of 
the C H  2 pairs at a given separation, and the distance 
from r0 to rmax indicates the width of this distribution. 
One can make the observation that some CH 2 pairs 
are on the fringe of  intermolecular interactions, some 
are arranged at their maximum, and others occupy 
intermediate positions. 

The mechanical behaviour of such a structure is 
different from the usual picture presented for dis- 
cussions of the strength of crystalline materials. On 
application of an external load, the chain segments 
positioned at rma x will need only a small load to flip 
over the 8U/& = fmax peak, contributing immediately 
to the "plastic" (or more correctly, anelastic) com- 
ponent of deformation. On increased loading this 
process will continue, i.e. molecules with closer 
spacing and higher binding force will be dragged over 
the force-distance peak. Finally, a value of  externally 
applied load will be reached at which breaking will 
occur of the bonds between those segments which 
have the maximum binding force. 

The collection of all the molecular segments with r 0 
spacing and maximum binding force fmax acts as a 
"memory network" in the amorphous polymer. On 
removal of load before the critical value the material 
will anelastically return to its original configuration 
because the C H  2 pairs with maximum bonding will 
exert back-pull through the covalent bonds on the 
"flipped" segments of the chain. 

It is now proposed that the strength of  this memory 
network determines the yield strength of the material. 
Thus to derive the tensile yield strength we refer to 
Fig. 2. When the applied stress reaches a value such 
that the memory network in the polymer is just on the 
point of breaking, then a force of the magnitude 
fm,x/(f) 2 must be applied to each of  the CH2 pairs 
which constitute the network. Since there are N~ of  
these pairs, and assuming shear yield criterion, the 
tensile yield strength of the material must be 

O-y = o~Nefmax/(~) 2 (1) 

where c~ includes a geometrical constant (analogous to 
the Schmidt factor), and Avogadro's number (because 
of  the units of fro,x)- N~, fmax, and ~ were defined 
previously when discussing Fig. 1. Noting that 

mass mass of (CHz) 

Qa = volume (~)2lc_ c sin 0/2 (2) 

where lc-c is the length of covalent C - C  link and 0 is 
the C - C - C  valency angle. Now ? can be eliminated 
from Equation 1 to obtain 

tTy = flNofrnaxQa (3) 

where/~ = [~/c-c sin (0/2)/(mass of CH2 • Avogadro's 
number)]. 

This is a totally novel view of the yield process in 
amorphous polymers, based entirely on a molecular 
approach. Equation 3 relates the yield strength to 
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Figure 2 The magni tude of  yield stress in simple tension involves 
Schmidt factor for the resolved shear stress on shear plane. 

fundamental material properties. Note that fl andfmax 
are temperature and pressure independent quantities. 
However, N o is a function o f ~  which depends on both 
temperature and pressure. 

4. Evaluation of N~ 
In Part 1 of this paper [6] the structure of  amorphous 
polyethylene was described in some detail. An import- 
ant feature was the concept of  the points of constric- 
tion, which effectively divide the length of any chain 
into segments of, at this stage, an undefined length. In 
this part of  the paper a special function is assigned to 
these segments as being the elemental unit of  the 
non-conservative motion leading to yielding of  the 
polymer. The value of  N o is in some reciprocal way 
linked to the length of these segments. No scheme for 
the calculation of  N o from basic principles is presented 
at this stage. Instead we proceed to estimate the value 
of N o from experimental results on chain motion in 
solid polyethylene published by Hentschel e t  al. [11]. 

The chain motion in the amorphous regions in 
linear polyethylene was studied by using various 
deuteron n.m.r, pulse methods. The results were 
analysed in terms of  the highly constrained confor- 
mational motions in the temperature range from 100 
to 300 K. Their work, as well as that of  many other 
similar studies of polyethylene, has shown that on 
increasing temperature there is found to be an 
increased fraction of mobile chains in the amorphous 
regions of polyethylene. More importantly, they were 
able to show that this mobility is at first (low temp) 
restricted to segments of  the chain of 3 bond lengths, 
then at higher temperatures 4 to 6 bond chain seg- 
ments become mobile and at room temperature 7 and 
longer bond segments acquire this mobility. 
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Figure 3 The inverse o f  the number  of  flexible bonds per chain 
segment in polyethylene as a function o f  temperature - obtained 
from [111. 

Clearly seen here is a connection between the above 
described mobility and the structure of amorphous 
polyethylene, as described earlier in this paper. One 
can identify the n-bond segments with the chain seg- 
ments between the points of  constriction. Therefore 
we define N 0 as proportional to 1/n-bond segment at 
a given fraction of  mobile segments in the bulk of  the 
polymer. 

Intuitively we may require that at least one in five of 
the segments must have the freedom to move (i.e. 
enough free volume) for the material to yield plas- 
tically. Therefore, referring again to the work of  
Hentschel et  al. [11], we may plot 1/n-bond of flexible 
segments, when that mobility achieves some 20% of  
the bulk. This plot is shown in Fig. 3. 

5. Calculation of the yield strength of 
amorphous polyethylene 

The following data are required in Equation 3 

- assume to be equal to 2 

I c c s i n 0 / 2  = �89 = 2.54 x 10-1~ 

mass ofCH2 = (12 + 2) 1.67 x 10-27kg 

Avogadro's number A = 6.02 x 1023mo1-1 

fmax = 4.6 X 10-1~ 

4,  = 1Iv ,  = 914kgm 3 

The values of N o are taken from Fig. 3, and the 
values of 4, are taken from Fig. 1 in the previous paper 
[6]. Thus finally the plot of  the yield strength, ~y, 
against temperature, as calculated from Equation 3, is 
shown in Fig. 4. 

The general trend of O-y with T as predicted by 
Equation 3 is acceptable, and in agreement with exper- 
imentally observed behaviour of amorphous poly- 
mers. 

6. Calculation of the anelastic limit in 
amorphous polyethylene 

Another feature of the model is that it predicts the 
strain up to the yield point as a recoverable anelastic 
deformation. This may be understood as follows. 
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Figure 4 The predicted variation of yield stress with temperature for 
polyethylene from Equation 3. 

In a segment of n-bonds, each CH 2 is distributed 
equally between r 0 and rmax, as implied in Fig. 1. With 
increasing stress the C H  2 situated closest to fmax will 
flip over -- thus contributing immediately to anelastic 
strain. At a higher stress the next CH2 nearest to fmax 
will flip. However, if at this stage the load is removed, 
the CH2 groups must return to their starting point. 
This is because they are connected by the covalent 
bonds to the rest of the segment. The points of  con- 
striction at both ends of the segment require force 
f = fm~x to be undone, and hence are still holding 
firmly. Therefore, these remaining parts of the seg- 
ment will pull back the "plastically deformed" CH2s 
over the peak, and back to their-original positions. 
However, since this is a non-conservative motion, on 
a macroscopic scale this will result in a mechanical 
hysteresis. 

A simple way to calculate the anelastic limit (i.e. the 
strain at which a = Cry and the points of  constriction 
(memory network) are being broken) is as follows. 

To break the memory network the applied stress 
must be equal to o%. The corresponding strain must be 
such that it m o v e s  C H  2 pairs spaced at r0 to spacing at 
rOr = fmax)" Therefore 

an rfmax -- r~ 
sy - (4) 

rSm~x 

In terms of  the diagram in Fig. 1, this gives a value of 
about 6% which agrees very well with the values 
measured in most amorphous polymers. 

7. D i s c u s s i o n  
7.1. Prediction of 0% and ~;n 
In Fig. 4 the yield strength of  amorphous polyethylene 
at 213K is of  the order of  1 5 0 M N m  -2. Compared 
with other amorphous polymers, such as polystyrene 
or PMMA, this figure seems somewhat high. The yield 
strength of  the latter two polymers is around 
50 MN m -2 at temperatures around 20~ below their 
Tg. This discrepancy may be viewed in two ways. 

The figure of  1 5 0 M N m  2 is close to being correct 
(but remains to be confirmed experimentally), and 

reflects the influence of  the absolute value of  tem- 
perature, i.e. 213 K for PE compared with 350 K for 
PS. This means that the yield strength of PS or 
PMMA is effectively lowered by thermally activated 
processes due to the higher temperature involved. 

The other view is that the figure of 150 MN m 2 is 
inaccurate because the estimation of NQ is very poor. 
This view may be correct because there is no definite 
model proposed as yet for the calculation of  N 0, and 
it was obtained by indirect means in the above calcu- 
lations. In this case the problem still remains to be 
resolved. 

On going to low temperatures, N~ tends to the value 
of 1, and correspondingly ay ought to approach the 
theoretical shear strength of  polyethylene on the crys- 
tallographic { 1 1 0} plane. The simplest calculation of 
the theoretical shear stress of a crystal was proposed 
by Frenkel [12] and discussed by Kelly [13]. The shear 
modulus G for the {1 1 0} plane in polyethylene is 
6 G N m  2 at 170K. Taking -Cmax/G = 1/10, we find 
Tmax = 600 MN m -2, which must be considered as the 
upper limit for O'y at low temperatures. 

An important feature of the above model is the 
prediction of the "anelastic limit", i.e. the recoverable 
strain at the point of  yield. This is in contrast to 
crystalline materials, from which we define the "elastic 
limit" at the point of yield. In both cases the defor- 
mation of the material is recoverable for all a < O-y, 
but in the case of amorphous polymers the defor- 
mation is time dependent and hysteretic. Thus the 
model predicts anelasticity and hysteresis as an inte- 
gral part of the yield process, and not incidental to it 
through thermally activated jumps. However the 
anelastic strain is fully recoverable only if T > 0 K as 
the elastic strain energy stored in the material is insuf- 
ficient to restore original positions of all atoms. 

The value of  ~;n a s  predicted by Equation 4 is of  the 
right order of magnitude since most amorphous poly- 
mers show yield at strains between 5 to 10%. 

7.2. O the r  yield t h e o r i e s  
One of  the earliest theories of flow in polymers was 
proposed by Eyring [3]. A significant contribution of 
Eyring's work is the concept of  configurational space 
of potential energy, in which forces between the atoms 
are equal to the gradient of the surface at any point 
with respect to distance. It is recognized that mol- 
ecular models of  yield and flow cannot successfully 
represent the atomic movements unless the configur- 
ational surface is explicitly known. This point was 
emphasised by Argon and Bessonov [14] in their paper 
on plastic flow in glassy polymers. 

The potential energy curve from Fig. 1 represents a 
trace of the cross-section between the configurational 
surface around any CH2 group and a plane of motion 
of  that particular group in the amorphous polyethyl- 
ene. This represents a small portion only of  the total 
surface. A more complete surface is illustrated in 
Fig. 5 where, under the applied forces, the B molecule 
is moved to the right, away from molecule A. The 
initial distance between A and B is taken as r0 = 
0.46 nm. To break the van der Waals bonding between 
A and B, it is necessary to move B by the distance 
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Figure 5 Variation of potential energy for rotation around the 
covalent carbon-carbon bond and van der Waals interaction 
between A and B CH 2 groups. 

therefore a reflection of the restructuring in the CH2- 
pairs distribution function with temperature. 

Hydrostatic pressure must have a direct bearing on 
the value of yield strength, again through its effect on 
the density of the polymer. The change in spacings 
between CH2-pairs is related to the changes in density 
or specific volume by 

Arlro = 1AoIo = 1 A V I V  (5) 

Consider the constitutive equation 

Ph = K(AV/V) (6) 

where Ph is the hydrostatic pressure and K is the bulk 
modulus. Substitution of Equation 6 in 5, and 5 in 1 
leads to 

(~y = c(Nofmax/[ro(l Jr ph/2g)] 2 (7) 

If the tensile yield strength is measured at both an 
atmospheric pressure and a superimposed hydrostatic 
pressure, then to a first approximation the ratio of 
these two is given by 

0"~/0"y tm ~ 1/(1 -- PhlK) (8) 

The yield strength of polycarbonate at room tem- 
perature and atmospheric pressure was measured at 
3 3 M N m  -2, and that measured under hydrostatic 
pressure Ph = 450 MPa was around 60 M N m  -2 [16]. 
If the bulk modulus K is taken to be around 1000 MN 
m 2, then putting these values in Equation 8 predicts 
very closely the ratio derived from the experimental 
data. 

[r ( f  = f r n a x )  - -  r0], i.e. about 0.05nm. Of course B 
can move only along a circular path, and in this 
motion will sweep an angle of about 20 ~ , which is 
insufficient to move it into the gauche position. 

A somewhat similar approach was adopted by 
Yannas [5]. However, the use of continuum mechan- 
ical concepts to calculate the required torque on a 
strophon to make it yield conceals the molecular 
nature of this process. 

The theory of yield proposed by Robertson [4] 
relied entirely on the rotational potential. Later work 
by Haward et al. [15] showed that rotational tran- 
sitions indeed may play a role at larger plastic strains, 
and lead to strain hardening. However, it must be 
concluded that the Robertson theory cannot be appli- 
cable to the onset of yield in polyethylene which 
occurs for strains between 5 to 10%. 

7.3. Dependence on temperature and 
hydrostatic pressure 

The yield strength ay is related to temperature through 
the parameters N 0 and ~A- 

The variation of N 0 and ~A with temperature is a 
manifestation of the changes in spacings between the 
van der Waals bonded CH 2 pairs. As the temperature 
drops down, the difference between ? and r 0 (as in 
Fig. 1) must reduce. Consequently the width of the 
distribution must decrease, and its height, N0, will 
increase in some fashion consistent with the overall 
changes in density. The change in resistance to de- 
formation of the material at different temperatures is 

7.4. Comparison with yield in crystalline 
materials 

In crystalline materials Young's modulus and yield 
strength are essentially independent material proper- 
ties. The modulus of elasticity is the property of the 
crystal lattice, whereas the yield strength is a function 
of lattice defects, and its value may be varied by as 
much as two orders of magnitude without changing 
the modulus. But, if the defects can be eliminated (or 
made ineffective) then modulus and strength are closely 
related through theoretical strength calculations. 

In polymeric materials Young's modulus and yield 
strength are more a property of the molecule rather 
than that of the crystal lattice. Therefore, both the 
modulus and strength are varied together by changes 
in microstructure (i.e. preferred molecular orien- 
tation). In a general sense this applies also to 
amorphous polymers. Clearly, the theory of yield for 
amorphous polymers should not, therefore, contain 
any elastic modulus as one of the independent vari- 
ables. 

However, one analogy with crystalline materials 
can be made. The distribution in bond strength 
(Fig. 1) can be viewed as analogous to a variety of 
dislocations with different Burgers vectors. The dis- 
locations with least Burgers vector (smallest 
Peierls-Nabarro force) correspond to CH2-CH2 
pairs with least van der Waals bonding (i.e. separation 
rrnax ). Next some CH 2-CH2 pairs with greater bond- 
ing correspond to dislocations requiring greater force 
to move, and so on. For example, in b cc iron 
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dislocation activity occurs well below yield point - the 
latter occurring only when the major network of dislo- 
cations breaks away from their locking atmospheres. 
Thus, in amorphous polymers flipping of CH2 groups 
over fm,x occurs well below ~y. However, the yield 
strength is reached only when the stress is sufficient to 
break the "memory network" formed by the chain 
molecules in the bulk of the polymer. 
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